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Abstract
Biokmod  is  a  Mathematica  toolbox  for  modeling  biokinetic  systems.  It
includes the SysModel  package  to solve system of ordinary linear  differen-
tial  equations  (SOLDE)  with  special  application  to  compartmental  and
physiological  models.  It  can  also  be  applied  to  fit  the  transfer  rates  using
experimental  data.  Biokmod  can  be  downloaded  from
http://web.usal.es/~guillerm/biokmod.htm.

1. Introduction

Loading the package

Before  starting  you  will  need  the  Biokmod  package.  It  can  be  downloaded  from
http://web.usal.es/~guillerm/biokmod.html.

To install  the package  extract  the file  biokmodXX.zip  into the  AddOns\Applications  folder,  it  will  create  a
new folder called Biokmod,  then from the Help  menu choose  Rebuild Help Index.  Now, you can load
the package as usual.

In[1]:= Needs@"Biokmod`SysModel`"D
SysModel, guillermüusal.es, version 1.2.1 2003-07-12

A compartmental analysis overview

Compartmental  analysis  has  applications  in  clinical  medicine,  pharmacokinetics,  internal  dosimetry,
nuclear  medicine,  ecosystem studies  and chemical  reaction  kinetics  [1]  [2]  [3].  It  can be described  as
the  analysis  of  a  system  in  which  the  system  is  separated  into  a  finite  number  of  component  parts
which are called compartments.  Compartments  interact  through the exchange of species.  Species may
be a chemical substance,  hormone, individuals  in a population  and so on. A compartmental  system is
usually represented by a flow diagram or a block diagram. 

We adopt the convention of representing compartments with circles or rectangles. The flow into or out
of the compartments is represented by arrows. The ith compartment of a system of n compartments  is
labelled i  and the size (amount  or content) of the component in compartment  i  as xi HtL. The exchange
between  compartments,  or  between  a  compartment  and  the  environment  is  labeled  ki j ,  where  i j
represents  the flow from i  to j  (if there is not ambiguity ki  will  be used  in place of kij ,  also, if i < 10
and j < 10 ki j  will be written in place of ki j ). The environment represents the processes that are outside
the system and is usually represented by zero, so ki0  is the fractional excretion coefficient from the ith
compartment  to the outside  environment.  If we suppose that the substance  introduced into the system
is  a  radioactive  isotope,  we  must  consider  the  radioactive  decay,  which  is  given  by  a  constant  rate
represented  by l (this  constant  is specific  for  each isotope). The decay constant  can be interpreted by
an equal flow going out of the system in each compartment.  The input from the environment  into the
jth  compartment  is  called  b j HtL.  With  regards  to  the  environment,  we  only  need  to  know  the  flow,
b j HtL, into the system from the outside.  The ki j  are called fractional transfer  rate coefficients,  they are
usually assumed constants but in some cases they can be function of the time (that is ki j HtL). 
So in the two compartment  model of Fig. 1, b1 HtL is the input from environment  into compartment  1,
k12  is the transfer rate coefficient from compartment  1 to compartment  2 and k21  from compartment 2
to 1,  k20  the  transfer  rate  coefficient  from compartment  1  to the  environment  (output),  and  x1 HtL  and
x2 HtL represents the quantities in compartment 1 and 2 at time t.
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Fig. 1 Two compartment model with input and output from compartment 1. 

The variables x1 HtL and x2 HtL are called the state variables of the system and their evolution in time is
described by a system of ordinary differential equations (SODE). In this case the SODE is

(1)   
x° 1 HtL = -k10 x1 HtL - k12 x1 HtL + k21 x2 HtL + b1 HtL
x° 2 HtL = k12 x1 HtL - k21 x2 HtL

Figure  2  shows  a  more  complex  compartmental  model  that  is  represented  by  eqn  (2)  where  we have
assumed also a radioactive decay with a disintegration constant l.
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Fig. 2 The general multi-input multi-output (MIMO) three-compartment model.

(2)   
x° 1 HtL = -Hl + k10 + k12 + k13 L x1 HtL + k21 x2 HtL + k31 x3 HtL + b1 HtL
x° 2 HtL = k12 x1 HtL - Hl + k20 + k21 + k23 L x2 HtL + k32 x3 HtL + b2 HtL
x° 3 HtL = k13 x1 HtL + k23 x2 HtL - Hl + k30 + k31 + k32 L x3 HtL + b3 HtL

(3)   x° HtL = A ÿ xHtL + bHtL for t ¥ 0

where xHtL is a column vector representing the compartment content, 

(4)   xHtL = 8x1 HtL, x2 HtL, x3 HtL<
bHtL is a column vector representing the inputs to compartment 1, 2, and 3,

(5)   bHtL = 8b1 HtL, b2 HtL, b3 HtL<
and  A  is  called  the  compartmental  matrix  and  it  can  be  obtained  using  the  package  function
CompartMatrix.

CompartMatrix@
n, 8trans-coeffs<, lD gives the matrix of coefficients of a compartmental system

where n is the number of compartments of the system,
trans-coeffs are the transfer rates and l  is
the radioactive decay constant Hby default l = 0,
which means that it is not a radioactive substance.L. The
transfer rates 8ki j < from compartment i to compartment j
are written: 881, 2, ki j <, ..., 8 i, j, ki j <, ...<  Hby default ki j = 0L.

So, the compartmental matrix of eqn (2) can be obtained as follows:
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In[2]:= CompartMatrix@3, 881, 0, k10<, 81, 2, k12<,81, 3, k13<, 82, 0, k20<, 82, 1, k21<, 82, 3, k23<,83, 0, k30<, 83, 1, k31<, 83, 2, k32<<, lD êê MatrixForm

Out[2]//MatrixForm=ikjjjjjjj -l - k10 - k12 - k13 k21 k31
k12 -l - k20 - k21 - k23 k32
k13 k23 -l - k30 - k31 - k32

y{zzzzzzz
In  those  circumstances  where  the  coefficients,  ai j ,  of  a  SODE  are  associated  with  physiologically
meaningful  values  that  correspond  to  the  measured  physiological  parameter,  or  may  be  a function  of
them,  a  physiological  model  [4,  5]  rather  than  compartmental  model  is  required.  For  these  cases  we
will directly give the values ai j  to the A matrix, instead of ki j , using the command CoefMatrix.

CoefMatrix@n, 8coeffs<D gives the matrix of coefficients,
for n retention variables where coeffs are
coefficients of the matrix: 881, 2, a12 <, ..., 8 i, j, ai j <, ...< 
for the ith row and jth column Hby default ai j =0L.

Equation  (6)  represents  a  physiological  model  [4].  The  model  is  built  out  of  a  plasma  or  vascular
compartment (vascular volume Vp ) and a tissue space which consists of two compartments, one for the
unbound  drug  (tissue  water  space  VTu )  and  one  for  the  drug  bound  (VTb )  to  tissue  constituents.  The
drug is transported from Vp  by perfusate flow Q, to VTu  across a permeability barrier (permeability-sur-
face product PS) and its binding is described by binding/unbinding constants kon ê koff .

(6)   

x° 1 HtL = -
Q + PS
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Vp
x1 HtL +

PS
ÅÅÅÅÅÅÅÅÅÅ
Vp

x2 HtL +
Q

ÅÅÅÅÅÅÅÅÅÅ
Vp

b1 HtL
x° 2 HtL =

PS
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
VTu

x1 HtL - J PS
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
VTu

+ kon N x2 HtL + koff
VTbÅÅÅÅÅÅÅÅÅÅÅÅÅ
VTu

x3 HtL
x° 3 HtL = kon

VTuÅÅÅÅÅÅÅÅÅÅÅÅÅ
VTb

x2 HtL - koff x3 HtL
 The matrix A for this model, which will be used later, is

In[3]:= physiomodel = CoefMatrixA3, 991, 1, -
ikjjjj Q

ÅÅÅÅÅÅÅ
Vp

+
PS
ÅÅÅÅÅÅÅ
Vp

y{zzzz =,91, 2,
PS
ÅÅÅÅÅÅÅ
Vp

=, 92, 1,
PS

ÅÅÅÅÅÅÅÅÅ
VTu

=, 92, 2, -ikjj PS
ÅÅÅÅÅÅÅÅÅ
VTu

+ kon
y{zz=,92, 3, koff

VTb
ÅÅÅÅÅÅÅÅÅ
VTu

=, 93, 2, kon  
VTu
ÅÅÅÅÅÅÅÅÅ
VTb

= , 83, 3, -koff<=E
Out[3]= 99-

PS
ÅÅÅÅÅÅÅVp

-
Q

ÅÅÅÅÅÅÅVp
, PS

ÅÅÅÅÅÅÅVp
, 0=,9 PS

ÅÅÅÅÅÅÅÅÅVTu
, -kon -

PS
ÅÅÅÅÅÅÅÅÅVTu

, koff VTbÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅVTu
=, 90, kon VTuÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅVTb

, -koff==
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The patterns that we have seen can be expanded to systems of n  compartments or n state variables (in
the case of physiological models). The equation for any compartment i is given by:

(7)   
x° HtL = A ÿ xHtL + bHtL
xH0L = x0

 t ¥ 0

where xH0L is the vector of the initial conditions:

(8)   xH0L = 8x1 H0L, x2 H0L, …, xn H0L<
The package has the function ShowODE for representing the differential equations.

ShowODE@Matrix-Coeffs,
incond, input, t, xD gives the SODE for a compartmental or

physiological model in classical mathematical notation;
Matrix-Coeffs is the coefficients matrix;
incond are the initial conditions 8x1 H0L, x2 H0L,…, xn H0L<; input are
the inputs 8b1 HtL, b2 HtL,…, bn HtL<  in compartment 81,…, n<;
x is the symbol that represents the retention variables.

So,  the  eqn  (6),  after  taking  into  account  that  the  input  function  is  9 Q
ÅÅÅÅÅÅÅÅÅÅ
Vp

b1 HtL, 0, 0=  and  the  initial

condition is 80, 0, 0<, can written as follows:

In[4]:= ShowODEAphysiomodel, 80, 0, 0<, 9 Q
ÅÅÅÅÅÅÅ
Vp

 b1@tD, 0, 0=, t, xE êê
TableForm êê TraditionalForm

Out[4]//TableForm=

x1
£ HtL  Q b1 HtLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅVp

+ I- PSÅÅÅÅÅÅÅÅVp
- QÅÅÅÅÅÅÅÅVp

M x1 HtL + PS x2 HtLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅVp

x2
£ HtL  PS x1 HtLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅVTu

+ I- PSÅÅÅÅÅÅÅÅÅÅVTu
- kon M x2 HtL + koff VTb x3 HtLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅVTu

x3
£ HtL  kon VTu x2 HtLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅVTb

- koff x3 HtL
x1 H0L  0

x2 H0L  0

x3 H0L  0

In[5]:= ClearAll@physiomodelD;
The iodine model

In some examples of this paper we will use the iodine biokinetic model represented in the Fig. 3 where
compartment  1  is  the  blood,  compartment  2  is  the  thyroid,  compartment  3  is  the  rest  of  the  body,
compartment 4 is the bladder, 3 Ø 0, i.e. a transfer from compartment 3 to the environment, represents
the output to the gastro intestinal tract (GIT) and 4 Ø 0 represents the output, via urine excretion, to the
environment. 
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Fig. 3 The Iodine biokinetic model taken from the ICRP 78. 

According  to  the  1978  International  Comission  of  Radiologial  Protection  report  (ICRP  78),  of  the
iodine entering the blood, 30 % goes to the thyroid, where it is cleared with a biological half-life of 80
days (The half-life, denoted by T1ê2 , and transfer rate, k, are related by k = lnH2L ê T1ê2 ). The remaining
iodine  in  the  blood  (70 %)  is  cleared  to  the  bladder.  The  half-life  of  the  iodine  in  the  blood  is  0.25
days.  The  iodine  leaving  the  thyroid  is  assumed  to  be  uniformly  distributed  in  the  ‘rest  of  body’
(referred in the diagram as compartment 3) where it is cleared with a half-life of 12 days. Of the iodine
leaving compartment 3, the 80 % returns to the blood and the remainder 20 % is excreted to feces. The
iodine  from  bladder  is  excreted  as  urine  with  a  the  transfer  rate  of  12  day-1 .  Therefore,  the  transfer
rates,  in  day-1 ,  are  k12 = 0.3 lnH2L ê 0.25,  k14 = 0.7 lnH2L ê0.25,  k23 = lnH2L ê 80,  k30 = 0.2 lnH2L ê 12,
k31 = 0.8 lnH2L ê12 and k40 = 12.

In the example that follows we will refer to iodine 131 which has  a radioactive half-life of 8.02 days.
This means that radioactive decay constant l is lnH2L ê 8.02 in day-1 . Using these values we obtain the
iodine 131 compartmental matrix. 

In[6]:= iodine131matrix = CompartMatrix@4,881, 2, 0.3 Log@2D ê 0.25<, 81, 4, 0.7 Log@2D ê 0.25<,84, 0, 12.<, 82, 3, Log@2D ê 80.< , 83, 0, 0.2 Log@2D ê 12< ,83, 1, 0.8 Log@2D ê 12<<, Log@2D ê 8.02D;
2. Solving biokinetic models 

Main package functions 

The  solution  of  eqn  (7)  when  ki j  are  constants  is  given  by  eqn  (9).  It  can  also  be  solved  using  the
Laplace  transform [2]. If some ki j  are functions  of the time, that is ki j HtL, then eqn (7) must be solved
using a numeric method.
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(9)    xHtL = x0 ‰At + ‡
0

t

‰AHt-tLbHtL„ t

The  package  has  the  SystemDSolve  function  to  compute  eqn  (7)  analytically  where  ki j  are  con-
stants. It gives the option to chose the method for solving this equation. 

SystemDSolve@
Matrix-Coeffs, incond,
input, t, t1 , x, optionsD gives the analytical solution xHtL=8x1 HtL, …, xn HtL< 

at time t1  of a SODE x° HtL =Aÿ xHtL + bHtL,
with initial conditions xH0L = incond = 8c1 , …, cn <, coefficients
matrix A = Matrix-Coeffs =88a11 , …, a1 n <, …, 8an1 , …, an n <<;
and bHtL=8b1 HtL, …, bn HtL<. The method to
solve the equation can be chosen with options.

The default method, MethodØAutomatic,  is usually the fastest.  The default method solves eqn (7)
by applying eqn (9) except if b is a constant, eqn (10) is then used.

(10)    xHtL = x0 ‰At + b‡
0

t

‰At „ t

If  bHtL = 9‚aiexpHbi tL, ‚ a j expHb j tL, ..., ‚ap expHbp tL=T ,  where  some  elements  may  be  zero,  the

rule given below by eqn (11) is applied to solve the integral term of eqn (9). This method computes the
matrix-exponential  ‰A t , given by ‰At = S‰A tS-1 , where A  is the diagonal matrix of eigenvalues  and
S is the eigenvectors matrix.

(11)   ‡
0

t

‰ bH t-tL Ha‰ ct L„ t = a‡
0

t

‰b t+Hc-bLt „ t =
a

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
b - c

H‰bt - ‰ct L if b ≠ c

If  MethodØEigenValues  is  entered  eigenvalues-eigensystem  method  is  applied  to  evaluate  the
matrix-exponential  with the Mathematica function MatrixExp. If MethodØLaplaceTransform
is entered Laplace Transform method is used [2, 6]. Applying Laplace transforms to eqn (7) gives

(12)    X HsL = HsI - AL -1 x0 + HsI - AL -1BHsL
where X HsL and BHsL are the Laplace transforms of xHtL and bHtL. Then eqn (7) can be solved by evaluat-
ing the inverse transformation of eqn (12):

(13)    xHtL = -1ikjjHsI - AL -1 x0
y{zz + -1 JHsI - AL -1BHsLN

Comparing  eqn  (9)  and  eqn  (13)  and  applying  the  Laplace  transform  convolution  property
-1 HHsI - AL -1BHsLL = -1 HHsI - AL -1 L-1 HBHsLL it may be seen that the matrix-exponential  is given
by, 

(14)   ‰A t = -1 JJsI - AN -1 N
Acute  inputs.  If  the  inputs  are  acute  (also  called  single  or  impulsive  inputs)  bHtL = x0  at  t = 0  and
bHtL = 0 for t ¥ 0  then we have an SODE given by eqn (15). Note that is equivalent to eqn (7) taking x0

as initial condition and bHtL = 0 for t ¥ 0.
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(15)   
x° HtL = A ÿ xHtL, t ¥ 0
xH0L = x0

The solution is

(16)    xHtL = x0 ‰At

For this case the package provides the function AcuteInput.

AcuteInput@
Matrix-Coeffs,
incond, t1 , xD gives the analytical solution

xHtL=8x1 HtL, …, xn HtL< at time t1  of a SODE x°  HtL =Aÿ x HtL,
with initial conditions, incond, x H0L =8c1 , …, cn <,
coefficient matrix, Matrix-Coeffs,
A =88a11 , …, a1 n <, …, 8an1 , …, ann <<.

Sometimes we need to solve models given by eqn (7) where the transfer rates are function of the time
or the inputs of the model are too complicate. In these cases we should use the command SystemND-
Solve. This function applies the Mathematica function NDSolve. 

SystemNDSolve@
Matrix-Coeffs, incond,
input, 8t, tmin , tmax <,
t1 , x, optionsD

gives the numerical solution x HtL=8x1 HtL, …, xn  HtL<,
in the interval tmin , tmax , at time t1 , of x°  HtL =Aÿ x HtL + b HtL,
with the initial conditions, incond,
x H0L =8c1 , …, cn <, coefficient matrix , Matrix-Coeffs,
A = 88a11 , …, a1 n <, …, 8an1 , …, ann << and b HtL=8b1  HtL, …, bn  HtL<;
options are the options of NDSolve.

Models with constant transfer rates

In this subsection  we will  show a few examples of the iodine  131 model  given by the compartmental
matrix iodine131matrix where the transfer rate coefficients ki j  are constants. 

Single  input.  Let’s  suppose  an  impulsive-injection  of  1200  Bq  of  131 I  (Bq  is  a  unit  of  radioactivity)
into  the  blood  (compartment  1)  in  t = 0.  It  is  equivalent  to  setting  initial  conditions  as81200, 0, 0, 0<.  The content  in each  compartments  can be obtained  using AcuteInput.  It  can also
be obtained using SystemDSolve with bHtL = 80, 0, 0, 0<.

In[7]:= AcuteInput@iodine131matrix, 81200, 0, 0, 0<, t1, xD êê Timing

Out[7]= 80. Second,8x1@t1D Ø 1200 H0. ‰-12.0864 t1 + 1.00003 ‰-2.85897 t1 - 0.000840995
‰-0.146574 t1 + 0.000808587 ‰-0.0927512 t1L,

x2@t1D Ø 1200 H0. ‰-12.0864 t1 - 0.300955 ‰-2.85897 t1 +
0.0135875 ‰-0.146574 t1 + 0.287368 ‰-0.0927512 t1L,

x3@t1D Ø 1200 H0. ‰-12.0864 t1 + 0.00096051 ‰-2.85897 t1 -

0.0493651 ‰-0.146574 t1 + 0.0484045 ‰-0.0927512 t1L,
x4@t1D Ø 1200 H-0.210331 ‰-12.0864 t1 + 0.210337 ‰-2.85897 t1 -

0.000136703 ‰-0.146574 t1 + 0.000130845 ‰-0.0927512 t1L<<
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Multiexponential  input.  In  this  example  it  is  assumed  an  input  into  compartment  1  is  given  by
b1 HtL = -27.13 ‰-24.08 t +27.13 ‰-2.86 t -0.020 ‰-0.147 t +0.0194‰-0.093 t  (This  kind  of  input  happens  in
real situations when there is an input from the GIT to the blood, for instance if the iodine is intaken by
orally).  The  initial  condition  is  81, 0, 0, 0<.  The  content  in  each  compartments  is  computed  using
SystemDSolve.

In[8]:= SystemDSolve@iodine131matrix, 81, 0, 0, 0<,8-27.13 ‰-24.08 t + 27.13 ‰-2.86 t - 0.020 ‰-0.147 t + 0.0194 ‰-0.093 t,
0, 0, 0<, t, t, xD êê Timing

Out[8]= 80.4 Second,8x1@tD Ø 1.27845 ‰-24.08 t - 26383.4 ‰-2.86 t + 26383.1 ‰-2.85897 t -

0.046598 ‰-0.147 t + 0.0389847 ‰-0.146574 t -
0.00840863 ‰-0.146574 t + 0.000953319 ‰-0.146574 t -

0.0563495 ‰-0.093 t + 0.00792735 ‰-0.0927512 t +
0.0635695 ‰-0.0927512 t - 0.000914526 ‰-0.0927512 t,

x2@tD Ø -0.0443356 ‰-24.08 t + 7937. ‰-2.86 t - 7939.87 ‰-2.85897 t +

0.746684 ‰-0.147 t - 0.629853 ‰-0.146574 t + 0.135853 ‰-0.146574 t -
0.0154022 ‰-0.146574 t - 22.408 ‰-0.093 t + 2.81734 ‰-0.0927512 t +

22.5923 ‰-0.0927512 t - 0.325018 ‰-0.0927512 t, x3@tD Ø

0.0000160487 ‰-24.08 t - 25.3217 ‰-2.86 t + 25.3404 ‰-2.85897 t -
2.30199 ‰-0.147 t + 2.28834 ‰-0.146574 t - 0.493573 ‰-0.146574 t +

0.0559583 ‰-0.146574 t - 3.79278 ‰-0.093 t + 0.474556 ‰-0.0927512 t +
3.80547 ‰-0.0927512 t - 0.0547464 ‰-0.0927512 t,

x4@tD Ø -0.20688 ‰-24.08 t + 0.883907 ‰-12.0864 t -

5549.84 ‰-2.86 t + 5549.16 ‰-2.85897 t -
0.00757473 ‰-0.147 t + 0.00633692 ‰-0.146574 t -

0.00136682 ‰-0.146574 t + 0.000154961 ‰-0.146574 t -

0.00911864 ‰-0.093 t + 0.0012828 ‰-0.0927512 t +
0.0102868 ‰-0.0927512 t - 0.000147988 ‰-0.0927512 t<<

Periodic  input.  Here  the  input  is  given  by  81 + 0.5CosH0.3tL, 0, 0, 0<  and  the  initial  condition  is81, 0, 0, 0<.  When  the  inputs  are  trigonometric  functions  it  is  a  good  idea  to  use  SystemDSolve
choosing  the  Laplace  transform  method.  The  evolution  of  the  iodine  retention  in  the  blood
(compartment 1) and in the thyroid (compartment 2) is plotted below.

In[9]:= solIodine = SystemDSolve@iodine131matrix,81, 0, 0, 0<, 81 + 0.5 Cos@0.3 tD, 0, 0, 0<,
t, t, x, Method Ø "LaplaceTransform"D;

In[10]:= Plot@Evaluate@8x1@tD, x2@tD < ê. solIodineD,8t, 1, 200<, PlotStyle Ø 88 RGBColor@1, 0, 0D<,8 AbsoluteDashing@84, 4<D, RGBColor@0, 0, 1D<<,
FrameLabel Ø 8"days", StyleForm@"xiHtL", FontFamily Ø

"Times", FontSlant Ø "Italic"D, None, None<,
PlotLabel Ø StyleForm@TraditionalForm@HoldForm@

b1@tD = 1 + 0.5 Cos@0.3 tDDD, FontFamily Ø "Times"D,
RotateLabel Ø False, ImageSize Ø 8288, 216<,
AspectRatio Ø 0.75D;
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Fig. 4 Plot of the retention, xi HtL, in compartment 1, solid line, and 2, dotted line, versus time.

Constant input. Let’s consider a constant input of 12 kBq/day into compartment 1 during a time t, the
initial  content  Ht = 0L  in each compartment  is 0.  After  a  time T ,  in this case  2 days,  input  ceases.  We
wish to know xHtL for 0 § t § T  and for t > T . The first period H0 § t1 § T L is evaluated as follows:

In[11]:= constinput@t1_D = SystemDSolve@iodine131matrix,80, 0, 0, 0<, 812, 0, 0, 0<, t, t1, xD;
The second period starts in t2 = t - T ,  then compartments  content can be evaluated assuming  a single
input  in t2 = 0 where  the  initial  conditions  are the  compartment  content  at  the  end  of the  first  period
(that is, constinput[T]).

In[12]:= singleinput@t2_, T_D = AcuteInput@
iodine131matrix, Map@Last, constinput@TDD, t2, xD;

A combined function that represents the retention for both intervals (one for 0 < t § T , when the input
is constant, and the other for t > T , when there isn’t any input) can be built as follows.

In[13]:= constsingle@t_, T_D :=
If@ t § T, constinput@tD, singleinput@t - T, TDD

This function is applied to T  and the content in compartments 1 and 2 as function of t is plotted. 

In[14]:= LogPlot@ 8constsingle@t, 2DP1, 2T, constsingle@t, 2DP2, 2T<,8t, 0, 20<, PlotStyle Ø 88RGBColor@1, 0, 0D<,8 AbsoluteDashing@84, 4<D, RGBColor@0, 0, 1D<<,
Frame Ø True, FrameLabel Ø 8"days", StyleForm@"xiHtL",

FontFamily Ø "Times", FontSlant Ø "Italic"D, None, None<,
RotateLabel Ø False, ImageSize Ø 8288, 216<,
AspectRatio Ø 0.75D;
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Fig. 5 Plot of the retention, xi HtL, in compartment 1, solid line, and 2, dotted line, versus time.

The reader can apply DSolve to solve the previous examples. It will be observed that SysModel 
is clearly faster, it even gives the solution in some occasions where DSolve does not obtain it.

In[15]:= ClearAll@solIodine, constinput,
singleinput, constsingle, constsingleD

A model with variable transfer rates

We will continue using the model of iodine 131 drawn in Fig. 3 but some transfer rates are function of
the time, t.

A  model  with  multi-inputs  and  variable  transfer  rates.  Let’s  consider  the  iodine  model  with  the
following  transfer  rate:  k14 = 1.9404,  k12 = 0.8316H1 + CosH0.2tLL,  k23 = 0.0086625H1 + CosH0.3tLL,
k30 = 0.01155 and k31 = 0.0462H1 + CosH1.2tLL. Also, the transfer from bladder to outside of the system
(via  urine  excretion)  happens  periodically,  it  has  a  constant  rate  k40 = 12  day-1  during  the  first  0.02
hours,  and  k40 = 0  for  the  following  4  hours.  An  input  into  compartment  1  given  by
b1 HtL = 1.7 t0.3 ‰- 24t ,  in Bq  ·  day-1 ,  happens  every  8  hours,  so  during  48  hours  when  the input  cease.
We wish to obtain the iodine content in each compartment as function of the time. The initial condition
is xHtL = 8 0, 0, 0, 0<.
The  first  step  is  to  build  a  function  k40 HtL  that  represents  the  periodic  transfer  rate  from  bladder  to
outside.  The  process  can  be  described  by  k40 HtL = k hHtL  where  hHtL = 0  if  Hn - 1LT < t § nT - DT ,
with n = 81, 2, ...<, and hHtL = 1 in other case. It can be done using the function UnitStep.

In[16]:= h@t_, a_, d_D := 1 - UnitStep@Mod@t, a + dD - dD;
Here hHt, T , DT L is plotted taking as example T = 1 and DT = 0.2.
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In[17]:= Plot@h@t, 1, 0.2D, 8t, 0, 6<,
PlotPoints Ø 1000, PlotRange Ø AllD;

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Then  this  function  is  used  with  k40 = 12hHt, 4 ê 24 ê, 0.02 ê24L  day-1  for  building  the  iodine  131
coefficient matrix.

In[18]:= iodineNonLinear =
CompartMatrix@4, 881, 2, 0.8316 H1 + Cos@0.2 tDL<,81, 4, 1.9404<, 82, 3, 0.0086625 H1 + Cos@0.3 tDL< ,83, 0, 0.01155< , 83, 1, 0.0462 H1 + Cos@1.2 tDL<,84, 0, h@t, 4 ê 24, 0.02 ê 24D <<, Log@2D ê 8.02D;

The following function represents a periodic input b1 HtL = 1.7 t0.3 ‰- 24t  , in Bq · day-1 , with a period T . 

In[19]:= inputB@t_, T_D :=

1.7 Jt - FloorA t
ÅÅÅÅ
T
E TN0.3 ExpA-24 Jt - FloorA t

ÅÅÅÅ
T
E TNE;

Now, it builds the complete form of the inputs. It is assumed that input ceased after 2 days an T = 1 ê 3
day.

In[20]:= b1@t_D := 8If@t < 2, inputB@t, 1 ê 3D, 0D, 0, 0, 0<;
Here is plotted b1 HtL.  This form of b1 HtL is physiologically  more representative of an injection than an
impulsive input.

In[21]:= Plot@b1@tDP1T, 8t, 0, 3<,
PlotPoints Ø 1000, PlotRange Ø AllD;
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Finally, the model is solved and the retention in compartment 1 (blood) and 2 (thyroid) is plotted. 

In[22]:= 8 x1@t_D, x2@t_D, x3@t_D, x4@t_D< =8x1@tD, x2@tD, x3@tD, x4@tD< ê.
SystemNDSolve@iodineNonLinear, 80, 0, 0, 0<,
b1@tD, 8t, 0, 200<, t, x, MaxSteps Ø 100000D;

In[23]:= Plot@8 x1@tD, x2@tD <, 8t, 1, 10<,
PlotStyle Ø 8 8AbsoluteDashing@82, 2<D, RGBColor@1, 0, 0D<,8AbsoluteThickness@1D, RGBColor@0, 0, 1D<<,
Frame Ø True, FrameLabel Ø 8"days", StyleForm@"xiHtL",

FontFamily Ø "Times", FontSlant Ø "Italic"D, None, None<,
RotateLabel Ø False, ImageSize Ø 8288, 216<,
AspectRatio Ø 0.75D;
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Fig. 6 Plot of the retention, xi HtL, in compartment 1, dotted line, and 2, solid line, versus time.
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In bioassay with radioactive isotopes it must usually be evaluated the total disintegrations in a compart-
ment  i  during a time t.   In the following example it  is calculated the disintegrations  in thyroid  during
the following 200 days after  starting the intake, we must multiply by 24 µ 3600 to obtain the solution
in Bq.

In[24]:= NIntegrate@24 * 3600 x2@tD , 8t, 0, 200<D
NIntegrate::ncvb :  
NIntegrate failed to converge to prescribed

accuracy after 7 recursive bisections
in t near t = 1.731493720555918`. More…

Out[24]= 60103.8

The message given by NIntegrate  does not necessarily indicate an error. In fact, it can be avoided
by changing the limits of integration.

In[25]:= NIntegrate@24 * 3600 x2@tD , 8t, 0, 1<D +
NIntegrate@24 * 3600 x2@tD , 8t, 1, 10<D +
NIntegrate@24 * 3600 x2@tD , 8t, 10, 200<D

Out[25]= 60103.8

In[26]:= Clear@h, iodineNonLinear, inputB, b1, x1, x2, x3, x4D
3. The Laplace transforms and the identifiability analysis 

The transfer rates ki j  are usually estimated using experimental data as it will shown in the next section.
The problem that  often happens  is that  there is  not only one  value for  ki j  but also  a number  finite  of
values  that  satisfy  the  solution  of  the  model.  This  is  known  as  the  identifiability  analysis  [2].  The
Laplace transforms is very useful in identifiabilily analysis

The  package  function  SystemLTSolve  gives  the  Laplace  transform  X HsL  of  xHtL  applying  the  eqn
(12). 

SystemLTSolve@
Matrix-Coeffs,
incond, input, t, s, xD gives the Laplace transforms X  HsL=8X1  HsL, …, Xn  HsL<,

of a SODE x°  HtL =Aÿ x HtL + b HtL, with the initial conditions,
incond, x H0L =8c1 , …, cn <, coefficient matrix, Matrix-Coeffs,
A =88a11 , …, a1 n <, …, 8an1 , …, ann << and b HtL=8b1  HtL, …, bn  HtL<.

A model with identifiability problems. In the model of the Fig.  7 (Example 6.5.  in Godfrey [2]) the
response  in the central  compartment  1 to a single  input of  1 unit  at  t = 0 has  been fitted  (no noise is
assumed) for the function x1exp HtL = 0.7expH-5 tL+0.2expH-tL+0.1expH-0.1tL. The problem consists of
determining the unknown transfer rates, 8k10 , k12 , k13 , k21 , k31 <, that will be assumed constants.
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Fig. 7  Tricompartmental model with input in the central compartment 

The problem could be solved obtaining 8k10 , k12 , k13 , k21 , k31 < from x1exp HtL = x1 HtL , however it can be
considerably easier applying its Laplace transforms X1exp HsL = X1 HsL.
The  Laplace  transform  XHsL  of  an  impulsive  input  of  1  unit  in  compartment  1  at  t = 0  can  be  made
using  SystemLTSolve  with  the  initial  condition  81, 0, 0<  and  bHtL = 80, 0, 0<.  We  will  need  to
define the compartmental matrix of the system.

In[27]:= tricompartment = CompartMatrix@3, 881, 2, k12<,82, 1, k21< , 81, 3, k13<, 83, 1, k31<, 81, 0, k10<<D;
In[28]:= 8X1@s_D, X2@s_D, X3@s_D< =8X1@sD, X2@sD, X3@sD< ê. SystemLTSolve@tricompartment ,81, 0, 0<, 80, 0, 0<, t, s, XD êê Simplify

Out[28]= 9 Hs + k21L Hs + k31LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅk10 Hs + k21L Hs + k31L + s Hk12 Hs + k31L + Hs + k21L Hs + k13 + k31LL ,

k12 Hs + k31LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅk10 Hs + k21L Hs + k31L + s Hk12 Hs + k31L + Hs + k21L Hs + k13 + k31LL ,

k13 Hs + k21LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅk10 Hs + k21L Hs + k31L + s Hk12 Hs + k31L + Hs + k21L Hs + k13 + k31LL =
The Laplace transform X1exp HsL of x1exp HtL = 0.7expH-5 tL+0.2expH-tL+0.1expH-0.1tL is:

In[29]:= X1exp = LaplaceTransform@
0.7 Exp@-5 tD + 0.2 Exp@-tD + 0.1 Exp@-0.1 tD, t, sD

Out[29]=
0.1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ0.1 + s +
0.2

ÅÅÅÅÅÅÅÅÅÅÅÅ1 + s +
0.7

ÅÅÅÅÅÅÅÅÅÅÅÅ5 + s

Now, the  transfer rate  8k10 , k12 , k13 , k21 , k31 <  can be obtained  solving X1exp HsL = X1 HsL.  The following
procedure is applied.
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In[30]:= SolveAlways@X1exp ã X1@sD, sD
Out[30]= 88k10 Ø 0.746269, k12 Ø 1.25488, k13 Ø 1.70885,

k21 Ø 0.324354, k31 Ø 2.06565<, 8k10 Ø 0.746269,
k12 Ø 1.70885, k13 Ø 1.25488, k21 Ø 2.06565, k31 Ø 0.324354<<

You  realize  that  two  sets  of  solutions  are  possible.  Notice  that  neither  set  contains  any  negative  rate
constants, which would permit rejection of such a set.

In[31]:= ClearAll@tricompartment , X1, X2, X3, X1expD;
4. Model fitting

In  this  section  we  will  describe  how  experimental  data  and  biokinetic  parameters  can  fitted.  More
detail about fitting can be found in reference [8].

We  want  to  estimate  the  values,  kon  and  koff  for  the  physiological  model  given  by  eqn  (6)  where
VTu = 6.411, Vp , 0.973, VTb = 1, PS = 2.714 and Q = 3. We build the coefficients matrix (note that we
use CoefMatrix and not CompartMatrix) as function koff  and kon  replacing VTu , Vp , VTb , PS, Q
for their values.

In[32]:= physiomodel@kon_, koff_D =

CoefMatrixA3, 991, 1, -
ikjjjj Q

ÅÅÅÅÅÅÅ
Vp

+
PS
ÅÅÅÅÅÅÅ
Vp

y{zzzz =,91, 2,
PS
ÅÅÅÅÅÅÅ
Vp

=, 92, 1,
PS

ÅÅÅÅÅÅÅÅÅ
VTu

=, 92, 2, -ikjj PS
ÅÅÅÅÅÅÅÅÅ
VTu

+ kon
y{zz=,92, 3, koff

VTb
ÅÅÅÅÅÅÅÅÅ
VTu

=, 93, 2, kon  
VTu
ÅÅÅÅÅÅÅÅÅ
VTb

= , 83, 3, -koff<=E ê.8VTu Ø 6.411, Vp Ø 0.973, PS Ø 2.714, Q Ø 3,
VTb Ø 1, kon Ø kon, koff Ø koff <;

In[33]:= ShowODEAphysiomodel@kon, koffD, 80, 0, 0<,9 Q
ÅÅÅÅÅÅÅ
Vp

 b1@tD ê. 8Vp Ø 0.973, Q Ø 3<, 0, 0=, t, xE êê
TableForm êê TraditionalForm

Out[33]//TraditionalForm=
x1

£ HtL  3.08325 b1 HtL - 5.87256 x1 HtL + 2.78931 x2 HtL
x2

£ HtL  0.423335 x1 HtL + H-kon - 0.423335L x2 HtL + 0.155982 koff x3 HtL
x3

£ HtL  6.411 kon x2 HtL - koff x3 HtL
x1 H0L  0

x2 H0L  0

x3 H0L  0
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The mathematical expression of b1 HtL was unknown but an experiment was made [4] where  b1 HtL was
given  by  the  best  fit  of  the  input  function  to  experimental  data  88t1 , b1<, …, 8tn , bn <<  obtained  via
sampling from an arterial catheter. Here are the experimental data:

In[34]:= dataCateter = 880., 0.<, 80.05, 402.7<, 80.1, 430.3<,80.15, 375.4<, 80.2, 292.4<, 80.25, 202.2<,80.3, 148.4<, 80.35, 96.4<, 80.4, 64.9<, 80.45, 41.7<,80.5, 25.3<, 80.55, 17.8<, 80.6, 8.8<, 80.65, 6.6<,80.7, 3.2<, 80.75, 2.5<, 80.8, 1.4<, 80.85, 0.9<,80.9, 0.5<, 81., 0.2<, 81.1, 0.07<, 81.2, 0.03<,81.3, 0.01<, 81.4, 0.003<, 81.45, 0.001<, 81.5, 0.001<<;
In[35]:= ListPlot@dataCateter,

FrameLabel Ø 8"days", TraditionalForm@b1@tDD, None, None<,
PlotRange Ø All, RotateLabel Ø FalseD;
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The graphic form suggests that an exponential function could be used to fit the data.

In[36]:= b@t_D =
a t Exp@c tD ê. FindFit@dataCateter, a t Exp@c tD , 8a, c<, tD

Out[36]= 13610.1 ‰-11.216 t t

The data and the fitted function can be compared.

In[37]:= Plot@b@tD , 8t, 0, 1<,
FrameLabel Ø 8"days", TraditionalForm@b1@tDD, None, None<,
PlotRange Ø All, RotateLabel Ø False, Epilog Ø8Hue@0D, PointSize@0.02D, Map@Point, dataCateterD<D;
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Now we have the input function in the form required by SysModel:

In[38]:= inputb@t_D = 9 Q
ÅÅÅÅÅÅÅ
Vp

 b@tD , 0, 0= ê. 8Vp Ø 0.973, Q Ø 3<
Out[38]= 841963.3 ‰-11.216 t t, 0, 0<

x1 HtL was also measured by sampling and the following experimental  data 88t1 , x1 Ht1 L<, …, 8tn , x1 Htn L<<
was obtained:

In[39]:= dataPhysio = 880.03, 14.50<, 80.08, 61.06<, 80.28, 120.93<,80.33, 109.01<, 80.38, 98.08<, 80.48, 69.66<,80.55, 51.51<, 80.65, 34.77<, 80.75, 23.21<, 80.85, 15.59<,80.95, 12.16<, 81.05, 9.598<, 81.15, 8.278<, 81.25, 6.842<,81.35, 5.871<, 81.45, 5.297<, 81.6, 4.886<, 81.8, 3.846<,82., 3.317<, 82.2, 2.899<, 82.4, 2.627<, 82.6, 2.289<,82.8, 1.998<, 83., 1.930<, 83.4, 1.589<, 83.75, 1.308<,84.25, 1.112<, 84.75, 1.064<, 85.25, 0.938<, 86.75, 0.842<,87.25, 0.831<, 87.75, 0.778<, 88.25, 0.818<, 811., 0.739<<;
We wish to obtain the numeric values of kon  and koff  fitting x1 HtL to the experimental data. We applied
Laplace transforms obtaining X1 Hs, kon , koff L

In[40]:= X1@kon_, koff_D = X1@sD ê. SystemLTSolve@
physiomodel@kon, koffD , 80, 0, 0<, inputb@tD, t, s, XD;

x1 HtL  can  be  obtained  applying  the  InverseLaplaceTransform  as  function  of  kon  and,  koff .
Notice that x1 HtL only has analytical solution when kon  and koff  take a numeric values.
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In[41]:= x1fit@kon_?NumericQ, koff_?NumericQD := Block@8x1<,
x1@t_D = InverseLaplaceTransform@X1@kon, koffD, s, tD;
Plus üü Apply@Hx1@#1D - #2L^2 &, dataPhysio, 81<DD;

We can now use FindMinimum to find kon  and koff .

In[42]:= FindMinimum@x1fit@kon, koffD, 8kon, 0.1, 1<, 8koff, 0.1, 1<D
Out[42]= 872.3264, 8kon Ø 0.713783, koff Ø 0.11072<<

They can also be found using NMinimize, it has the advantage that restrictions for parameters can be
used. However it may take longer to compute.

In[43]:= NMinimize@8x1fit@kon, koffD, 0 < kon, 0 < koff <, 8kon, koff<D
Out[43]= 872.3264, 8koff Ø 0.11072, kon Ø 0.713783<<

 The same solution can obtained applying SystemNDSolve instead of the Laplace transform method
to solve the differential equation.

x1fit@kon_?NumericQ, koff_?NumericQD :=
Block@8x1<, x1@t1_D =

x1@t1D ê. SystemNDSolve@physiomodel@kon, koffD,80, 0, 0<, inputb@tD , 8t, 0, 12<, t1, xD;
Plus üü Apply@Hx1@#1D - #2L^2 &, dataPhysio, 81<DD;

Sometimes  we  need  not  only  the  values  of  fitted  parameters  but  also  additional  statistic  information
such  as  confidence  intervals,  ANOVA  table  and  so  on.  We  can  apply  NonlinearRegress
(included  in  the  package  NonlinearFit)  but  if  the  model  to  be  fitted  it  doesn’t  have  an  analytic
expression  NonlinearRegress  can  not  find the  derivatives.  In this  case,  the  gradient  method can
be used but the derivatives for each parameter to be fitted must be supplied to Mathematica (This was
suggested  in  mathgroup  by  Carl  Woll,  from  Washington  University).  It  can  be  complex  when  the
number of variables and coefficients is big. We have found that the problem can be made easier using
the numeric derivatives applying the package NumericalMath`NLimit.

In[44]:= Needs@"Statistics`NonlinearFit`"D;
Needs@"NumericalMath`NLimit`"D;

The  first  step  consists  in  defining  a  Mathematica  function  that  gives  the  solution  of  the  model  as
function of the parameters to be fitted. We need the solution of the model for x1 HtL because experimen-
tal data has been measured for x1 HtL. Notice that the model only has a solution if the parameters take a
numeric values.

In[46]:= model@t1_?NumericQ, kon_?NumericQ, koff_?NumericQD :=
x1@t1D ê. SystemNDSolve@physiomodel@kon, koffD,80, 0, 0<, inputb@tD , 8t, 0, 12<, t1, xD
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Alternatively we could have used: model[t1_?NumericQ,kon_?NumericQ, koff_?NumerÖ
icQ]:= InverseLaplaceTransform[X1[kon,koff], s, t1];

The derivatives of the model for kon  and koff  are supplied to Mathematica.

In[47]:= Derivative@0, 1, 0D@modelD@a1_, n_, a3_D :=
ND@model@a1, a2, a3D, a2, nD;

Derivative@0, 0, 1D@modelD@a1_, a2_, n_D :=
ND@model@a1, a2, a3D, a3, nD;

Finally we can apply NonlinearRegress. It will usully take a long time. 

In[49]:= NonlinearRegress@dataPhysio , model@t, kon, koffD,8t<, 88kon, 80.71, 0.72<<, 8koff, 80.11, 0.12<<<,
Method Ø Gradient, RegressionReport Ø8BestFit, EstimatedVariance, ParameterCITable,
ANOVATable, FitResiduals<D êê Timing91436.69 Second, 9BestFit Ø model@t, 0.713776, 0.11072D,

EstimatedVariance Ø 2.26021, ParameterCITable Ø

Estimate Asymptotic SE CI
kon 0.713776 0.135961 80.436833, 0.99072<
koff 0.11072 0.087151 8-0.0668012, 0.28824<,

ANOVATable Ø

DF SumOfSq MeanSq
Model 2 49996.2 24998.1
Error 32 72.3267 2.26021
Uncorrected Total 34 50068.5
Corrected Total 33 36461.4

,

FitResiduals Ø 80.259995, -2.44331, -6.16581, -5.08623,
-0.483775, 1.01419, -0.291276, 0.40449, -0.00856548,
-0.751105, 0.0275014, 0.0765785, 0.431042, 0.122791,
-0.0428358, -0.0063403, 0.282174, -0.0562354, -0.0406078,
-0.020154, 0.0658322, 0.0217257, -0.027425, 0.103861,
0.0629891, -0.0344923, -0.05354, 0.0106716, -0.0427131,
-0.0324013, -0.0246131, -0.062303, -0.00916313, -0.0309578<==

You can realize that the previous patterns could be applied to other models with two or more parame-
ters for fitting. The pattern for fitting model is the following:

Derivative@1, 0, 0, 0, …, 0D@modelD@n_, a2_, a3_, a4_, …D :=
ND@model@a1, a2, a3, a4, …, aiD, a1, nD;
Derivative@0, 1, 0, 0, …, 0D@modelD@a1_, n_, a3_, a4_, …D :=
ND@model@a1, a2, a3, a4, …, aiD, a2, nD;
Derivative@0, 0, 1, 0, …, 0D@modelD@a1_, a2_, n_, a4_, …D :=
ND@model@a1, a2, a3, a4, …, aiD, a3, nD;
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Derivative@0, 0, 0, …, 0, 1D@modelD@a1_, a2_, a3_, …, n_D :=
ND@model@a1, a2, a3, a4, …, aiD, ai, nD;
NonlinearRegress@data, model,
variables, parameters, Method Ø GradientD

The computation time is usually long. 

In[50]:= ClearAll@physiomodel, dataCateter,
b, inputb, X1, x1fit, modelD;

5. Additional information 

Biokmod  includes  a  tutorial  with  many  examples.  Additional  material  can  be  downloaded  from  the
authors web site: web.usal.es/~guillerm/. Some of its features can be run directly in the webMathemat-
ica  site:  www3.enusa.es/webMathematica/Public/biokmod.html.  The  author  would  appreciate  any
suggestions to improve Biokmod.

References

[1] J.A. Jacquez  Compartmental analysis in biology and medicine, The University of Michigan Press,
1985.

[2] K. Godfrey, Compartmental models and their application, Academic Press, London, 1983.

[3] G. Sanchez and J. Lopez-Fidalgo, ‘Mathematical techniques for solving analytically large compart-
mental systems’. Health Phys. 85 (2003) 194. 

[4]  A.  Sánchez-Navarro,  C.  Casquero,  and  M.  Weiss,  ‘Distribution  of  ciprofloxacin  and  ofloxacin  in
the isolated hindlimb of the rat’, Pharmaceutical Research 16 (1999) 587.

[5]  Q.  Zheng,  ‘Exploring  physiologically  based  pharmacokinetic  model’.  Mathematica  in  Education
and Research 6 (1997) 22.

[6]  W.  Harris  and H. von  Bremen, ‘Using  the Laplace  transform to compute  the matrix exponential’.
Mathematica in Education and Research 7 (1998) 35. 

[7] International Commission on Radiological Protection, Individual Monitoring for Internal Exposure
of Workers. ICRP Publication 78, Pergamon Press, Oxford, 1997. 

[8] D.C. Bates and D.G. Watts, Nonlinear regression Analysis and its Applications, Wiley, New York,
1988.

70 Guillermo Sánchez

Mathematica in Education and Research  Vol.10 No.2




