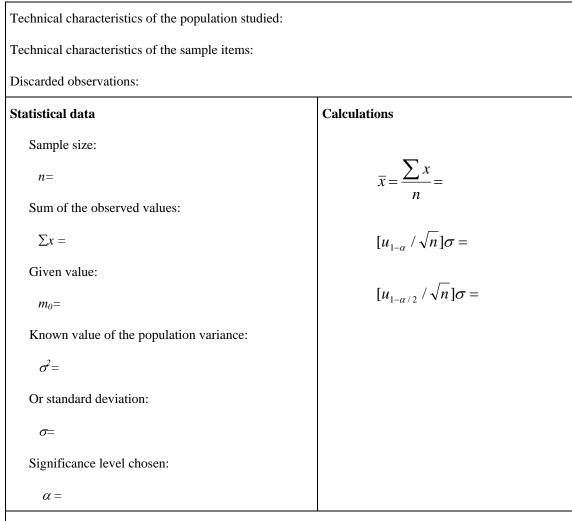
TABLE A - Comparison of a mean with a given value (variance known)



Results

Comparison of the population mean with the given value m_0

Two-sided case:

$$|\overline{x} - m_0| > [u_{1-\alpha} / \sqrt{n}]\sigma$$

The hypothesis of the equality of the population mean to the given value (null hypothesis) is rejected if:

One-sided cases:

a) The hypothesis that the population mean is not smaller than m_0 (null hypothesis) is rejected if:

$$\overline{x} < m_0 - [u_{1-\alpha} / \sqrt{n}] \sigma$$

b) The hypothesis that the population mean is not greater than m_0 (null hypothesis) is rejected if:

$$\overline{x} > m_0 + [u_{1-\alpha} / \sqrt{n}] \sigma$$

TABLE A' - Comparison of a mean with a given value (variance unknown)

Calculations

 $\overline{x} = \frac{\sum x}{n} =$

 $[t_{1-\alpha}(v)/\sqrt{n}]s =$

 $[t_{1-\alpha/2}(v)/\sqrt{n}]s =$

 $\frac{\sum (x - \bar{x})^2}{n - 1} = \frac{\sum x^2 - (\sum x)^2 / n}{n - 1}$ $\sigma^* = s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$

Technical characteristics of the population studied:

Technical characteristics of the sample items:

Discarded observations:

Statistical data

Sample size:

$$n=$$

Sum of the observed values:

$$\sum x =$$

Sum of the squares of the observed values:

$$\sum x^2 =$$

Given value:

 $m_0 =$

Degrees of freedom:

$$v=n-1$$

Significance level chosen:

$\alpha =$

Results

Comparison of the population mean with the given value m_0

Two-sided case:

The hypothesis of the equality of the population mean to the given value (null hypothesis) is rejected if:

$$|\bar{x} - m_0| > [t_{1-\alpha/2}(v)/\sqrt{n}]s$$

One-sided cases:

a) The hypothesis that the population mean is not smaller than m_0 (null hypothesis) is rejected if:

$$\overline{x} < m_0 - [t_{1-\alpha}(v) / \sqrt{n}]$$
s

b) The hypothesis that the population mean is not greater than m_0 (null hypothesis) is rejected if:

$$\overline{x} > m_0 + [t_{1-\alpha}(v) / \sqrt{n}] s$$

TABLE B - Estimation of a mean (variance known)

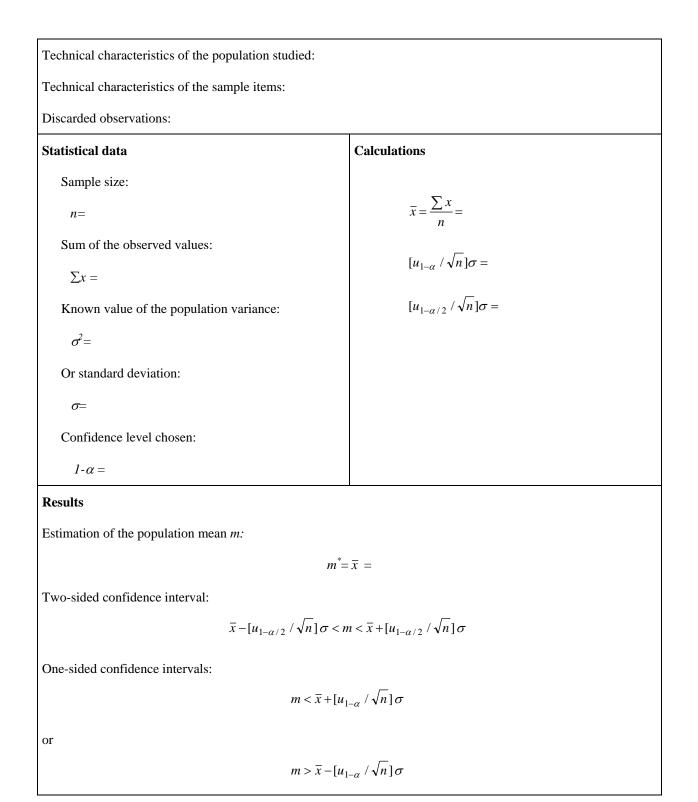


TABLE B' - Estimation of a mean (variance unknown)

Technical characteristics of the population studied:			
Technical characteristics of the sample items:			
Discarded observations:			
Statistical data	Calculations		
Sample size:			
n=	$\overline{x} = \frac{\sum x}{n} =$		
Sum of the observed values:	$\frac{n}{\sum (x-\bar{x})^2} = \sum x^2 - (\sum x)^2 / n$		
$\sum x =$	$\frac{n-1}{n-1} = \frac{n-1}{n-1}$		
Sum of the squares of the observed values:	$\frac{\sum (x-\overline{x})^2}{n-1} = \frac{\sum x^2 - (\sum x)^2 / n}{n-1}$ $\sigma^* = s = \sqrt{\frac{\sum (x-\overline{x})^2}{n-1}}$		
$\sum x^2 =$	1 1 1		
Degrees of freedom:	$[t_{1-\alpha}(\nu)/\sqrt{n}]s =$		
<i>v=n-1</i>	$[t_{1-\alpha/2}(\nu)/\sqrt{n}]s =$		
Confidence level chosen:	-1 0,2 · · · -		
<i>1- α</i> =			
Results			
Estimation of the population mean <i>m</i> :			
$m^* = \overline{x} =$			
Two-sided confidence interval:			
$\overline{x} - [t_{1-\alpha/2}(\nu)/\sqrt{n}]s < m < \overline{x} + [t_{1-\alpha/2}(\nu)/\sqrt{n}]s$			
One-sided confidence intervals:			
$m < \overline{x} + [t_{1-\alpha}(\nu) / \sqrt{n}] s$			
or			
$m > \overline{x} - [t_{1-\alpha}(\nu)/\sqrt{n}]s$			

TABLE C - Comparison of two means (variance known)

Technical characteristics:	∫ of popula		
	of popula	tion 2	
Technical characteristics of			
the sample items taken:	ms taken: in population 2		
Discarded observations:	∫ in sample	e 1	
	in sample	e 2	
Statistical data			Calculations
	First sample	Second sample	$\overline{x}_1 = \frac{\sum x_1}{n_1} =$ $\overline{x}_2 = \frac{\sum x_2}{n_2} =$ $\sigma_d = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} =$
Size:	$n_1 =$	$n_2 =$	$\overline{x}_2 = \frac{\sum x_2}{n_2} =$
Sum of the observed values:	$\sum x_I =$	$\Sigma x_2 = \sigma_2^2 =$	$\sqrt{\frac{\sigma^2}{\sigma^2 + \sigma^2}}$
Known value of the variances	σ_1^2 =	$\sigma_2^2 =$	$\sigma_d = \sqrt{\frac{\sigma_1}{n_1} + \frac{\sigma_2}{n_2}} =$
of the population:			$u_{1-\alpha}\sigma_d =$
Significance level chosen:			$u_{1-\alpha/2}\sigma_d =$
$\alpha =$			
Results			
Comparison of the two populations means:			
Two-sided case:			
The hypothesis of the equality of	of the means	(null hypothe	esis) is rejected if:
$ \overline{x}_1 - \overline{x}_2 > u_{1-\alpha/2}\sigma_d$			
One-sided cases:			
a) The hypothesis that the first mean is not smaller than the second (null hypothesis) is rejected if:			
$\overline{x}_1 < \overline{x}_2 - u_{1-\alpha}\sigma_d$			
b) The hypothesis that the population mean is not greater than the second (null hypothesis) is rejected if:			
$\overline{x}_1 > \overline{x}_2 + u_{1-\alpha}\sigma_d$			

TABLE C' - Comparison of two means (variance unknown, but may be assumed equal)

	∫ of populati	on 1	
Technical characteristics:	l of populati		
Technical characteristics of the sample items taken:	{ in populati in populati		
Discarded observations:	$\begin{cases} \text{in sample 1} \\ \text{in sample 2} \end{cases}$	l	
Statistical data			Calculations
	First sample	Second sample	$\overline{x}_1 = \frac{\sum x_1}{\sum x_1} =$
Size:	$n_1 =$	$n_2 =$	<i>n</i> ₁
Sum of the observed values:	$\sum x_I =$	$\sum x_2 =$	$\overline{x}_2 = \frac{\sum x_2}{n_2} =$
Sum of the squares of the observe values:	$\sum x_1^2 =$	$\sum x_2^2 =$	n_{2} $\sum (x_{1} - \overline{x}_{1})^{2} + \sum (x_{2} - \overline{x}_{2})^{2} =$ $\sum x_{1}^{2} + \sum x_{2}^{2} - (\sum x_{1})^{2} / n_{1} - (\sum x_{2})^{2} / n_{2} =$
			$\sum x_1^2 + \sum x_2^2 - (\sum x_1)^2 / n_1 - (\sum x_2)^2 / n_2 =$
Degrees of freedom	$v = n_1 + n_2 - 2 =$		$\sigma_d^* = s_d = \sqrt{\frac{n_1 + n_2}{n_1 n_2} \frac{\sum (x_1 - \overline{x}_1)^2 + \sum (x_2 - \overline{x}_2)^2}{n_1 + n_2 - 2}} =$
Significance level chosen:			$t_{1-\alpha}(v)s_d =$
α =			$t_{1-\alpha}(\nu)s_d = t_{1-\alpha/2}(\nu)s_d =$

Results

Comparison of the two populations means:

Two-sided case:

The hypothesis of the equality of the means (null hypothesis) is rejected if:

$$|\overline{x}_1 - \overline{x}_2| > t_{1-\alpha/2}(\nu)s_d$$

One-sided cases:

a) The hypothesis that the first mean is not smaller than the second (null hypothesis) is rejected if:

$$\overline{x}_1 < \overline{x}_2 - t_{1-\alpha}(\nu)s_d$$

b) The hypothesis that the population mean is not greater than the second (null hypothesis) is rejected if:

 $\overline{x}_1 > \overline{x}_2 + t_{1-\alpha}(\nu)s_d$

Technical characteristics:	f of popula of popula		
Technical characteristics of the sample items taken:	{ in population 1 in population 2		
Discarded observations:	f in sample 1 in sample 2		
Statistical data			Calculations
	First sample	Second sample	$\overline{x}_1 = \frac{\sum x_1}{n_1} =$
Size:	$n_l =$	$n_2 =$	$\overline{x}_2 = \frac{\sum x_2}{\sum x_2} =$
Sum of the observed values:	$\sum x_I =$	$\sum x_2 =$	$\overline{x}_2 = \frac{\sum x_2}{n_2} =$ $\sigma_d = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} =$
Known value of the variances	$\sigma_1^2 =$	$\sigma_2^2 =$	$\sigma_d = \sqrt{\frac{\delta_1}{n_1} + \frac{\delta_2}{n_2}} =$
of the population:			$u_{1-\alpha}\sigma_d =$
Confidence level chosen:			$u_{1-\alpha/2}\sigma_d =$
$1 - \alpha =$			
Results			
Estimation of the difference of the two populations means $m_1 y m_2$:			
$\left(m_1 - m_2\right)^* = \overline{x}_1 - \overline{x}_2 =$			

TABLE D - Estimation of difference of two means (variances known)

Two-sided confidence interval:

$$(\overline{x}_1 - \overline{x}_2) - u_{1 - \alpha/2} \sigma_d < m_1 - m_2 < (\overline{x}_1 - \overline{x}_2) + u_{1 - \alpha/2} \sigma_d$$

One-sided confidence interval:

$$m_1 - m_2 < (\overline{x}_1 - \overline{x}_2) + u_{1-\alpha}\sigma_d$$

or

$$m_1 - m_2 > (\overline{x}_1 - \overline{x}_2) - u_{1-\alpha} \sigma_d$$

Technical characteristics:	J	fof population 1 of population 2		
Technical characteristics of	\mathbf{X}			
the sample items taken:	Lin populati	on 2		
Discarded observations:	\int in sample 1	\int in sample 1		
	Lin sample 2	lin sample 2		
Statistical data			Calculations	
	First sample	Second sample	$\overline{x}_1 = \frac{\sum x_1}{n} =$	
Size:		$n_2 =$		
Sum of the observed values:	$\sum x_I =$	$\sum x_2 =$	$\overline{x}_2 = \frac{\sum x_2}{n_2} =$	
Sum of the squares of the observe values:	$\sum x_1^2 =$	$\sum x_2^2 =$	$n_{2} = n_{2}$ $\sum (x_{1} - \overline{x}_{1})^{2} + \sum (x_{2} - \overline{x}_{2})^{2} =$ $\sum x_{1}^{2} + \sum x_{2}^{2} - (\sum x_{1})^{2} / n_{1} - (\sum x_{2})^{2} / n_{2} =$	
			$\sum x_1^2 + \sum x_2^2 - (\sum x_1)^2 / n_1 - (\sum x_2)^2 / n_2 =$	
	$v = n_1 + n_2 - 2z$		$\sigma_d^* = s_d = \sqrt{\frac{n_1 + n_2}{n_1 n_2} \frac{\sum (x_1 - \overline{x}_1)^2 + \sum (x_2 - \overline{x}_2)^2}{n_1 + n_2 - 2}} =$	
Confidence level chosen:			$t_{1-\alpha}(v)s_d =$	
1-α =			$t_{1-\alpha}(\nu)s_d = t_{1-\alpha/2}(\nu)s_d =$	

TABLE D' - Estimation of two means (variance unknown, but may be assumed equal)

Results

Estimation of the difference of the two populations means $m_1 y m_2$:

$$(m_1 - m_2)^* = \overline{x}_1 - \overline{x}_2 =$$

Two-sided confidence interval:

$$(\bar{x}_1 - \bar{x}_2) - t_{1 - \alpha/2}(\nu)s_d < m_1 - m_2 < (\bar{x}_1 - \bar{x}_2) + t_{1 - \alpha/2}(\nu)s_d$$

One-sided confidence interval:

$$m_1 - m_2 < (\overline{x}_1 - \overline{x}_2) + t_{1-\alpha}(\nu)s_d$$

or

$$m_1 - m_2 > (\overline{x}_1 - \overline{x}_2) - t_{1-\alpha}(\nu)s_d$$

TABLE E - Comparison of a variance or of a standard deviation with a given value

 $\sum (x - \overline{x})^2 = \sum x^2 - \frac{(\sum x)^2}{n} =$

 $\frac{\sum (x-\overline{x})^2}{\sigma_0^2} =$

 $\chi^2_\alpha(\nu) =$

 $\chi^2_{1-\alpha}(\nu) =$

 $\chi^2_{\alpha/2}(v) =$

 $\chi^2_{1-\alpha/2}(\nu) =$

Technical characteristics of the population studied: Technical characteristics of the sample elements: Discarded observations: Statistical data Sample size: Calculations

$$n=$$

Sum of the observed values:

 $\sum x =$

Sum of the squares of the observed values:

$$\sum x^2 =$$

Given value:

$$\sigma_0^2 =$$

Degrees of freedom:

 $\alpha =$

Significance level chosen:

Results

Comparison of the population variance with the given value σ_0^2 :

Two-sided case:

The hypothesis that the population variance is equal to the given value (null hypothesis) is rejected if:

$$\frac{\sum (x - \bar{x})^2}{\sigma_0^2} < \chi^2_{\alpha/2}(v) \quad or \quad \frac{\sum (x - \bar{x})^2}{\sigma_0^2} > \chi^2_{1 - \alpha/2}(v)$$

One-sided cases:

a) The hypothesis that the population variance is not larger than the given value (null hypothesis) is rejected if:

$$\frac{\sum (x-\bar{x})^2}{\sigma_0^2} > \chi_{1-\alpha}^2(v)$$

b) The hypothesis that the population variance is not smaller than the given value (null hypothesis) is rejected if:

$$\frac{\sum (x-\overline{x})^2}{\sigma_0^2} < \chi_\alpha^2(\nu)$$

TABLE F - Estimation of a variance or of a standard deviation

Technical characteristics of the population studied:			
Technical characteristics of the sample items:			
Discarded observations:			
Statistical data	Calculations		
Sample size:	$(\sum x)^2$		
n=	$\sum (x - \overline{x})^2 = \sum x^2 - \frac{(\sum x)^2}{n} =$		
Sum of the observed values:	$s^2 = \frac{\sum (x - \overline{x})^2}{n - 1} =$		
$\sum x =$			
Sum of the squares of the observed values:	$\frac{\sum (x-\bar{x})^2}{\chi^2_{\alpha}(v)} =$		
$\sum x^2 =$	<i>nu</i> ()		
Degrees of freedom:	$\frac{\sum (x - \overline{x})^2}{\chi_{l=\alpha}^2(V)} =$		
<i>v=n-1</i>			
Confidence level chosen:	$\frac{\sum (x-\overline{x})^2}{\chi^2_{\alpha/2}(\nu)} =$		
$1 - \alpha =$	$\frac{\sum (x-\bar{x})^2}{\chi^2_{1-\alpha/2}(v)} =$		
	$\frac{1}{\chi^2_{1-\alpha/2}(\nu)} =$		

Results

Estimation of the population variance σ^2 :

 $(\sigma^2)^* = s^2 =$

Two-sided confidence interval:

$$\frac{\sum \left(x-\overline{x}\right)^2}{\chi^2_{1-\alpha/2}(v)} < \sigma^2 < \frac{\sum \left(x-\overline{x}\right)^2}{\chi^2_{\alpha/2}(v)}$$

One-sided confidence intervals:

$$\sigma^2 < \frac{\sum (x - \bar{x})^2}{\chi^2_{\alpha}(v)}$$

or

$$\sigma^{2} > \frac{\sum (x - \bar{x})^{2}}{\chi^{2}_{1-\alpha}(v)}$$

TABLE G - Comparison of two variances or of two standard deviations

Technical characteristics:	$\int of populat$	tion 1	
Technical characteristics:	of populat	tion 2	
Technical characteristics of	\int in populat	tion 1	
the sample items taken:	Lin population 2		
Discarded observations:	∫ in sample	1	
	Lin sample	2	
Statistical data			Calculations
	First sample	Second sample	$\sum (x_1 - \overline{x}_1)^2 = \sum x_1^2 - \frac{(\sum x_1)^2}{n_1} =$
Size:		$n_2 =$	<i>n</i> 1
Sum of the observed values:	$\sum x_I =$	$\sum x_2 =$	$\sum (x_2 - \overline{x}_2)^2 = \sum x_2^2 - \frac{(\sum x_2)^2}{n_2} =$
Sum of the squares of the observe values:	$\sum x_1^2 =$	$\sum x_2^2 =$	$s_1^2 = \frac{\sum (x_1 - \overline{x}_1)^2}{n_1 - 1} =$
Degrees of freedom:	$v_I = n_I - 1$	$v_2 = n_2 - 1$	$s_1^2 = \frac{\sum (x_1 - \overline{x}_1)^2}{n_1 - 1} =$ $s_2^2 = \frac{\sum (x_2 - \overline{x}_2)^2}{n_2 - 1} =$
Significance level chosen:			$F_{1-\alpha}(v_1, v_2) = F_{1-\alpha/2}(v_1, v_2) =$
α =			$\frac{1}{F_{1-\alpha}(v_2, v_1)} = \frac{1}{F_{1-\alpha/2}(v_2, v_1)} =$

Results

Comparison of the population variances:

Two-sided case:

The hypothesis of the equality of the variances (null hypothesis) is rejected if:

$$\frac{s_1^2}{s_2^2} < \frac{1}{F_{1-\alpha/2}(v_2, v_1)} \quad or \quad \frac{s_1^2}{s_2^2} > F_{1-\alpha/2}(v_1, v_2)$$

One-sided cases:

a) The hypothesis that the first variance is not greater than the second (null hypothesis) is rejected if:

$$\frac{s_1^2}{s_2^2} > F_{1-\alpha}(v_1, v_2)$$

b) The hypothesis that the first variance is not smaller than the second (null hypothesis) is rejected if:

$$\frac{s_1^2}{s_2^2} < \frac{1}{F_{1-\alpha}(\nu_2, \nu_1)}$$

TABLE H - Estimation of the ratio of two variances or of two standard deviations

Technical characteristics: Technical characteristics of the sample items taken: Discarded observations:	$\begin{cases} of populat \\ of populat \\ in populat \\ in populat \\ in sample \end{cases}$	tion 2 tion 1 tion 2	
	Lin sample	2	
Statistical data			Calculations
	First sample	Second sample	$\sum (x_1 - \overline{x}_1)^2 = \sum x_1^2 - \frac{(\sum x_1)^2}{n_1} =$
Size:	$n_l =$	$n_2 =$	n_1
Sum of the observed values:	$\sum x_I =$	$\sum x_2 =$	$\sum (x_2 - \overline{x}_2)^2 = \sum x_2^2 - \frac{(\sum x_2)^2}{n_2} =$
Sum of the squares of the observe values:	$\sum x_1^2 =$	$\sum x_2^2 =$	$s_{1}^{2} = \frac{\sum (x_{1} - \overline{x}_{1})^{2}}{n_{1} - 1} =$ $s_{2}^{2} = \frac{\sum (x_{2} - \overline{x}_{2})^{2}}{n_{2} - 1} =$
Degrees of freedom:	$v_l = n_l - 1$	$v_2 = n_2 - 1$	$s_2^2 = \frac{\sum (x_2 - \overline{x}_2)^2}{n_2 - 1} =$
Confidence level chosen: $I - \alpha =$			$F_{1-\alpha}(v_2, v_1) \frac{s_1^2}{s_2^2} = F_{1-\alpha/2}(v_2, v_1) \frac{s_1^2}{s_2^2} = \frac{1}{F_{1-\alpha}(v_1, v_2)} \frac{s_1^2}{s_2^2} = \frac{1}{F_{1-\alpha/2}(v_1, v_2)} \frac{s_1^2}{s_2} = \frac{1}{F_{1-\alpha/2}(v_1, v_2)} $

Results

Estimation of the ratio of the two population variances σ_1^2 and σ_2^2 :

$$\left(\frac{\sigma_1^2}{\sigma_2^2}\right)^* = \left(\frac{s_1^2}{s_2^2}\right) = \frac{\sum (x_1 - \overline{x}_1)^2 / (n_1 - 1)}{\sum (x_2 - \overline{x}_2)^2 / (n_2 - 1)}$$

Two-sided confidence interval:

$$\frac{1}{F_{1-\alpha/2}(\nu_1,\nu_2)}\frac{s_1^2}{s_2^2} < \frac{\sigma_1^2}{\sigma_2^2} < F_{1-\alpha/2}(\nu_2,\nu_1)\frac{s_1^2}{s_2^2}$$

One-sided confidence interval:

$$\frac{\sigma_1^2}{\sigma_2^2} < F_{1-\alpha}(v_2, v_1) \frac{s_1^2}{s_2^2} \quad or \quad \frac{\sigma_1^2}{\sigma_2^2} > \frac{1}{F_{1-\alpha}(v_1, v_2)} \frac{s_1^2}{s_2^2}$$